

Liveness Verification of RGPS Process Layer Meta-model

Hao Yang

College of Media Engineering, Zhejiang University of Media and Communications, China

415360889@qq.com

Keywords: OWL-S; Promela; LTL formula; Liveness verification

Abstract: With the related theory and technology development of network software, network
software has been widely used. Based on the characteristics of network software and framework of
RGPS requirement meta-model, this paper proposes liveness verification of RGPS process layer
meta-model. Firstly, it uses OWL-S language to describe RGPS process layer meta-model. Then, it
uses Promela language to achieve modeling of OWL-S model. Next, it uses LTL formula to describe
the properties of the Promela model and carry on liveness verification analysis of RGPS process layer
meta-model. Finally, liveness verification of RGPS process layer meta-model is proved by an urban
traffic system.

1. Introduction
Along with cloud computation, coordinated computation and general computation constantly

emerging, it promotes software engineering to network software time. The core of network software
system is requirement engineering. In order to better-targeted guidance network software
requirement modeling, it proposes RGPS requirement meta-model frame[1]. RGPS requirement
meta-model frame has already passed ISO certification and become an international standard[2].
However, RGPS is only a requirements modeling framework and does not provide a requirements
validation scenario. RGPS is also a lack of correctness support for the final result. In order to improve
the efficiency and reliability of verification, formalization method is being implemented
internationally.

Model checking is a common formal analysis and verification method[3]. Through the state space
search method, it detects a given model whether satisfies a formalized representation particular
property. It includes three key steps for system modeling, protocol ingestion, and system verification.
The advantage of model checking is safe to automatically verification. It is due to effective software
tool support, such as Spin, SWV, CWB.

This paper is organized as follows. In section 2, it introduces Spin model checking tool. In section
3, it gives OWL-S process model. In section 4, it implements OWL-S process model to Promela
model. In section 5, it introduces liveness verification. In section 6, an urban transport system
example proves the validity of liveness verification method.

2. Spin Model Checking Tool
Spin is a model checking tool and is used to verify the model whether satisfy description property.

Spin is a widely used software tool for analyzing logical consistency of concurrent systems. For the
wrong result, the error path is returned. It can detect system design logic error. The model is designed
to describe the interaction process in the system and to minimize the details within the process in
order to reduce the size of the system. The processes in the system pass the message primarily
through the channel or by sharing a global variable.

Spin verification process is as follows. It describes system model. After analyzing no syntax errors,
the system's interaction process is simulated. Until the model is confirmed to have the expected
behavior and then a language-written validator is generated by command. The compiler compiles and

2019 9th International Conference on Management, Education and Information (MEICI 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/meici.2019.037194

mailto:415360889@qq.com

generates an executable verification file that can be verify. If a breach is found, feedback is given to
the interactive simulator.

Spin typical operation mode starts with a description high-level standard model or starts with a
distributed algorithm and after syntax error checking. A simulation to confirm that the system is
designed with the expected behavior. Then it produces an optimization validator from the high-level
specification model. The verification procedure describes with the language in the limited translation
time. After choice use selling and buying of real esgate within the same family algorithm,verification
program can be executed by the compiler.

3. OWL-S Process Model
The predecessor of Web Ontology Language for Service(OWL-S) is DAML-S. OWL-S has

defined the Web service subclass process model. Depending on the level of granularity, the process is
divided into atomic process, combination process and simple process. There is no control structure
inside the atomic process. The composition process consists of a series of sub-processes implemented
by controlling flow and data flow connections. Simple process mainly describes process model from
abstract angle.

Control flows defined in OWL-S have Sequence, Split, Split-Join, Choice, If-Then-Else,
Repeat-Until. Sequence defines a set of sequential processes. Split defines a set of simultaneous
processes. Split-Join defines a set of partial synchronized execution processes. Choice a set of select
n processes to perform in m processes. If-Then-Else defines a set of based on the criteria select the
appropriate implementation processes. Repeat-Until defines a set of processes that are cycled under
certain conditions.

Each process consists of three parts. It respectively is input, carry out condition and result. Result
includes input and carry out effect. When satisfies the process carried out the condition, according to
the input and at that time moves the environment condition to produce output and carries out effect. Is
performes from the former state transition to the state after the execution.

The transportation requirement unceasing growth and the transportation network day by day
complex proposed the new challenge to the urban traffic system development. The urban traffic
system gradually shows the characteristics of the typical complex software system. Based on the
requirement use case of urban traffic systemand on the basis of RGPS requirement meta-model
framework, the process layer meta-model of urban traffic system is constructed.

Traffic plan

receive plan

traffic price traffic type traffic week

return plan

Figure 1. An urban traffic system

User traffic plan can be divided into atomic process generation preference, combined process
preparation traffic, combined process traffic plan and atomic process support traffic. Four processes
are associated by order. Combined process traffic plan consists of atomic process query lines and
atomic process confirmation lines.

Partial code of process model which describes by OWL-S language is as follows.
<process: CompositeProcess rdf: resource = “Traffic Plan”>

195

<process: composed of>
<process: sequence>

<process: components rdf: parseType = “collection”>
<process: AtomicProcess rdf: resource = “traffic price”>
<process: AtomicProcess rdf: resource = “traffic type”>
<process: AtomicProcess rdf: resource = “traffic week”>

</process: components>
</process: sequnce>

</process: composed of>
</process: CompositeProcess>

4. Promela Modeling of OWL-S Process Model

Promela is an intuitive design protocol language provided by Spin which is a model checking tool.
It is a formal descriptive language used to model finite state systems. It uses the advancement
definition system behavior and through the channel for inter-process communication and data
exchange. The basic elements described by the process include assignment statements, conditional
statements, communication statements, non-deterministic selection, and circular statements.

Promela language supports all traditional programming language basic data types, such as integers,
characters, booleans and arrays. Some variables represented in the pre- and post-conditions in
OWL-S can be defined as global or local variables. Promela language supports the mtype
enumeration type and may use mtype to define the message type. mtype = {nil, done} indicates
whether a process is executed or whether the value of a variable is assigned.

The communication between messages can use global variables or channel. In the OWL-S
description process model mainly involves the control to flow with the data stream. The control
circulates has defined the syncChan channel in each combination process to control the sub-process
the movement. The process control channel syncchan as a binary group, such as chansyncChan = [1]
of {int, mtype}, where int indicates the sending process, mtype indicates the message type process
name. It establishes the dataChan channel expression advancement the data stream.

Transform each process in the OWL-S process model into a process in the Promela language and
the process is instantiated through run actions.

(1) Atomic process/simple process modeling
Atomic processes and simple processes are non-divided and are implemented in the Promela

model with atomic{}.
proctype AtomicProcess(chan syncChan, dataChan){
atomic{…}
syncChan!_pid,done;}

(2)Combination process modelling
The composition process is a combination of a set of processes. In Promela model, control

multiple sub-processes in a combination process implemented in channel mode. It defined as channel
childSync and childData.

proctype CompositeProcess(chan syncChan, dataChan) {
chan childSync = [1] of {int, mtype};
chan childData = [1] of {int};
…
syncChan!_pid, done;}

OWL-S process model Promela modelling algorithm false code is as follows.
OWLS2PROMELA(M)
define_Type(M)
define_NeverClaim(M.Prop)
For each P in M{
define_proctype(P)

196

define_proctypeMain(P) }
init{ define_Channel(M)
run proctypeMain()}

5. Liveness Verification

LTL is an important formal method of describing system constraints. It first developed by Manna
and Pnueli to describe the concurrency characteristics of the system. It uses the path as the object of
the proposition and interprets its true value on the state sequence. Linear temporal logic may facilitate
describes the system important property, such as safety and liveness. Safety is used to show that bad
things never happen. Liveness is used to show good things will happen eventually. Spin supports all
may use the accurate verification request which LTL expressed. LTL includes &&,||,->,！and ◇,□,○.
◇p indicates that the p in all future status is true. □p indicates that p in future all states will be really.

A liveness verification tool achieves in the Eclipse platform. The main accessibility tools involved
are Spin model checking tools, OWL-S API, OWL-S file resolution with OWL-S API. Firstly, user
needs to describe the process layer meta-model, form the specification of the OWL-S file and use the
OWL-S API to parse it. Secondly, it performs Promela modeling, generates .pml files and uses LTL
to describe model property. Finally, it carries on Spin to check and return result. This tool contains the
main function include Process level meta-model OWL-S description, OWL-S process model Promela
modeling and model liveness verification.

6. Experiments

RGPS process layer meta-model partial code which is describes by Promela is shown as follows.
proctype ReadytoTravel(chan syncChan, dataChan)
 {chan childSync = [1] of {int, mtype};
 chan childData = [1] of {bool};
 pid x1, x2, x3;
 x1 = run Confirmpreference(childSync, childData);
 if
 ::childSync??eval(x1),done->
 atomic{x2 = run TravelPlan(chan syncChan, dataChan);
 if
 ::childSync??eval(x2),done->
 atomic{
 x3 = run SupportTravel(chan syncChan, dataChan);
 if
 ::childSync?/eval(x3),done->skip;
 fi;}
 fi;
 if
 ::childSync?/eval(x2),done->skip;
 fi;}
 fi;
 if
 ::childSync?/eval(x1),done->skip;
 fi;
 syncChan!_pid, done;}

It uses SPIN tool to verify liveness.
Input LTL formula []<>p&&[]<>q, it obtains the following result.

Full statespace search for:
never claim –

197

assertion violations +(if within scope of claim)
cycle checks-(disabled by –DSAFETY)
invalid end states +(disabled by never claim)
State-vector 57 byte, depth reached 123, errors: 0

Inpute LTL formula []<>q&&[]<>r, it obtains the following result.
Full statespace search for:
never claim –
assertion violations +(if within scope of claim)
cycle checks –(disabled by –DSAFETY)
invalid end states –(disabled by never claim)
State-vector112 byte, depth reached 135, errors: 1

7. Summary

Because model checking is highly automated, simple and fast, and provides counterexamples, it
has received widespread attention. The complexity of model checking depends mainly on the size of
the system state space. The biggest problems faced by model checking method is state space
explosion and lack of memory. Spin offers a number of optimization technologies, such as partial
sequencing protocols and on-the-fly, for detecting increasingly complex Web services. This article
introducew how use Promela language modelling OWL-S process level meta-model and developes
liveness verification platform. Finally, combined with the concrete example, liveness of RGPS
process layer meta-model is verified.

Acknowledgments

This work is the final result of Introduction of Zhejiang University Of Media and Communications
Scientific Research Grants Project(Z301B15521).

References
[1] J. Wang, K. He, B. Li, RGPS: A Unified Requirements Meta-Modeling Frame for Networked
Software, Proceedings of the 3rd international workshop on Applications and advances of problem
frames,(2008), pp. 29-35.
[2] K. He, R. Peng, Design methodology of Networked software evolution growth based on software
patterns, Journal of System Science and Complexity, vol. 19,no.2, (2006), pp. 157-181.
[3] A. Meski, W. Penczek ,G. Rozenberg ,Model checking temporal properties of reaction systems,
Information Sciences, vol. 313, (2015), pp. 22-42.
[4] A. Sistla, Employing symmetry reductions in model checking, Computer Languages Systems &
Structures, vol. 30, no.3-4, (2004), pp. 99-137.
[5] M. Mundhenk, F. Wei, An AC complete model checking problem for intuitionistic logic,
Computational Complexity, vol. 23, no.4,(2014), pp. 637-669.
[6] Y. Shi, C. Tian, Z. Duan, Model checking Petri nets with MSVL, Information Sciences, vol.
363,(2016), pp. 274-291.
[7] A. Donaldson, A. Miller, Automatic Symmetry Detection for Promela, Journal of Automated
Reasoning. vol.41, no.3-4, (2008), pp.251-293.
[8] V. Cheval, V. Cortier and S. Delaune, Deciding equivalence-based properties using constraint
solving, Theoretical Computer Science, vol. 492,(2013), pp. 1-39.
[9] M. Shen, Hinfin filtering of continuous Markov jump linear system with partly known Markov
modes and transition probabilities, Journal of the Franklin Institute, vol. 350, no. 10, (2013), pp.
3384-3399.

198

